تخمین مقاومت نهایی تیرورق های تحت اثر بارهای موضعی به کمک شبکه های عصبی مصنوعی (یادداشت فنی)

نویسندگان

  • حبیب رجبی مشهدی دانشگاه فردوسی مشهد
  • فرزاد شهابیان دانشگاه فردوسی مشهد
چکیده مقاله:

بارهای موضعی یکی از چندین نوع بارگذاری بوده که می تواند باعث بروز ناپایداری و گسیختگی تیرورق‌ها شود. عوامل مهم و مؤثر در ناپایداری از قبیل کمانش جان وبال و ایجاد لهیدگی در محل اتصال بال به جان باعث پیچیده شدن رفتار تیرورق ها می شود. روابط پیشنهاد شده کنونی بر اساس نتایج حاصل از آزمایش و به صورت نیمه تجربی بوده و خطای حداکثری در حدود 20 درصد داشته است. تحلیل به روش اجزای محدود نیز به همان دلایل ذکر شده همواره با مشکل وخطا همراه بوده است. در این پژوهش از شبکه های عصبی برای تخمین مقاومت نهایی تیرورق های تحت اثر بارهای موضعی استفاده شده است. برای آموزش شبکه، نتایج آزمایش های موجود مورد استفاده قرار گرفته است. نتایج حاصل نشان می دهد که خطای حداکثر 11 درصد بوده که در مقایسه با سایر روش ها و موارد مشابه از دقت بالاتری برخوردار است.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تخمین عمق آبشتگی موضعی در اطراف پایه های واقع در مجرای اصلی آبراهه ها به کمک شبکه عصبی مصنوعی

تحقیقات آزمایشگاهی و صحرایی در زمینه آبشستگی اطراف پایه های مستقر در مجاری اصلیرودخانه ها در پنجاه سال گذشته منجر به ارائه روابط متعدد برای بر آورد حداکثر عمق حفره آبشستگی شده است . هر کدام از روابط یاد شده اثر پارامتر های محدودی را مورد بررسی قرار می دهد به همین دلیل بر آوردهای قابل اعتمادی ارائه نمی دهند. در این تحقیق با بهره گیری از معتبر ترین داده های جمع آوری شده در چند دهه گذشته امکان است...

متن کامل

تخمین پارامترهای خشک کردن گوجه فرنگی با کمک شبکه های عصبی مصنوعی

در این پژوهش خشک کردن لایه ای نازک گوجه فرنگی به روش جابجایی هوای داغ شبیه سازی گردید. اسلایس های گوجه فرنگی در دو دمای (60 و 70 درجه سانتیگراد) خشک شدند. شبکه عصبی پرسپترون برای پیش بینی نسبت رطوبت و سرعت خشک کردن نمونه ها در طی خشک کردن بکار گرفته شد. بهترین چیدمان شبکه عصبی برای شبکه اول بر اساس یک لایه پنهان،2 و 8 نرون در لایه پنهان به ترتیب برای نسبت رطوبت و آهنگ خشک کردن بود. همچنین بهتری...

متن کامل

تخمین عمق آبشتگی موضعی در اطراف پایه های واقع در مجرای اصلی آبراهه ها به کمک شبکه عصبی مصنوعی

تحقیقات آزمایشگاهی و صحرایی در زمینه آبشستگی اطراف پایه های مستقر در مجاری اصلیرودخانه ها در پنجاه سال گذشته منجر به ارائه روابط متعدد برای بر آورد حداکثر عمق حفره آبشستگی شده است . هر کدام از روابط یاد شده اثر پارامتر های محدودی را مورد بررسی قرار می دهد به همین دلیل بر آوردهای قابل اعتمادی ارائه نمی دهند. در این تحقیق با بهره گیری از معتبر ترین داده های جمع آوری شده در چند دهه گذشته امکان است...

متن کامل

تخمین تبخیر و تعرق مرجع روزانه به کمک مدل درخت تصمیمM5 و شبکه عصبی مصنوعی

تعیین دقیق آب مصرفی گیاه باعث افزایش راندمان آبیاری و بهبود مدیریت آب در مزرعه را دنبال دارد. تبخیر و تعرق یک از اجزای اصلی چرخه­ی هیدرولوژی محسوب می­شود و برآورد دقیق آن در مدیریت منابع آب نقش اساسی دارد. در این تحقیق به ارزیابی مدل درختی  M5  و مدل شبکه­ی عصبی تحت شرایط مختلف حداقل داده­ی اقلیمی در یک منطقه­ی خشک سرد پرداخته شد. داده­های مورد استفاده در این تحقیق شامل دمای حداقل و حداکثر، رطو...

متن کامل

مدل‌‌سازی و تخمین طول مفصل پلاستیک ستون های بتن‌آرمه به کمک شبکه‌های عصبی مصنوعی

شبکه‌های عصبی مصنوعی تا حدودی از مغز انسان الگوبرداری شده‌اند و همان‌گونه که مغز انسان می‌تواند با استفاده از تجربیات قبلی و مسائل از پیش یادگرفته، مسائل جدید را تحلیل و تجزیه نماید، شبکه‌های عصبی نیز در صورت آموزش قادرند بر مبنای اطلاعاتی که به ازای آن‌ها آموزش دیده‌اند، جواب‌های قابل قبول ارائه دهند و نیز می‌توان از آن‌ها به طور نامحدود در ارائه جواب به اطلاعاتی که قبلا با آن‌ها مواجه نبوده‌ا...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 45  شماره 1

صفحات  17- 22

تاریخ انتشار 2011-03-21

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023